Shock Hugoniot of H2O ice

نویسندگان

  • Sarah T. Stewart
  • Thomas J. Ahrens
چکیده

[1] The outcome of impacts onto and between icy planetary bodies is controlled by the material response defined by the shock Hugoniot. New Lagrangian shock wave profile measurements in H2O ice at initial temperatures (T0) of 100 K, together with previous T0 = 263 K data, define five distinct regions on the ice Hugoniot: elastic shocks in ice Ih, ice Ih deformation shocks, and shock transformation to ices VI, VII and liquid water. The critical pressures required to induce incipient melting (0.6, 4.5 GPa) and complete melting (3.7, >5.5 GPa) upon isentropic release from the shock state (for T0 = 263, 100 K) were revised using calculated shock temperatures and entropy. On account of the >40% density increase upon transformation from ice Ih to ices VI and VII, the critical shock pressures required for melting are factors of 2 to 5 lower than earlier predicted. Consequently, hypervelocity impact cratering on planetary surfaces and mutual collisions between porous cometesimals will result in abundant shock-induced melting throughout the solar system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hugoniots and Shock-melting Criteria for Solid and Porous H2o Ice

Introduction. Knowledge of the dynamic response of planetary minerals such as H2O ice is required to model and interpret mutual collisions and impact craters. The Hugoniot of H2O ice describes the dynamic strength and possible shock-compressed states, which determine the mechanical and thermodynamic work done during an impact event. Previous studies [1, and references within] of the shock prope...

متن کامل

Shock properties of H2O ice

[1] To understand the mechanics and thermodynamics of impacts on, and collisions between, icy planetary bodies, we measured the dynamic strength and shock states in H2O ice. Here, we expand upon previous analyses and present a complete description of the phases, temperature, entropy, and sound velocity along the ice shock Hugoniot. Derived from shock wave measurements centered at initial temper...

متن کامل

A New H2o Ice Hugoniot: Implications for Planetary Impact Events

Collisions on icy planetary bodies produce impact melt water, redistribute ground ice, and deposit thermal energy available for chemical reactions. The amount of melt generated from an impact is sensitive to the initial temperature, which ranges from the 273 K on Earth and Mars to 40 K on the surface of Pluto. Previous shock wave studies, centered at ~263 K for terrestrial applications, had dif...

متن کامل

IDENTIFICATION OF ICE VI ON THE HUGONIOT OF ICE I h

Ice VI has been produced by shock compression of ice I h to about 2 GPa. This is the second high-pressure polymorph of water observed in shock loading. These experiments point out the ease with which high-pressure phases can form when ice I h is impacted. The new shock data, combined with previous static measurements, provide preliminary equation of state parameters for ice VI of V = 0.7732 m3/...

متن کامل

Structure and dynamics of shock-induced nanobubble collapse in water.

Shock-induced collapse of nanobubbles in water is investigated with molecular dynamics simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003